Consider the function $f(x)=x^{\frac{1}{x}}$. Its |
minimum value is $e^{\frac{1}{e}}$ maximum value is $e^{\frac{1}{e}}$ minimum value is $e^e$ maximum value is $\left(\frac{1}{e}\right)^e$ |
maximum value is $e^{\frac{1}{e}}$ |
The correct answer is Option (2) → maximum value is $e^{\frac{1}{e}}$ $f(x)=x^{\frac{1}{x}}⇒x∈(0,∞)$ let, $y=x^{\frac{1}{x}}⇒\log y=\frac{1}{x}\log x$ $⇒g'(x)=\frac{1-\log x}{x^2}$ and, $g'(x)=0$ $⇒1-\log x=0$ $⇒x=e$ and, $g''(x)<0$ ∴ $f(x=e)=e^{\frac{1}{e}}$ is maximum value of f(x). |