Statement-1: Let $\vec r$ be any vector in space. Then, $\vec r=(\vec r.\hat i)\hat i+(\vec r.\hat j)\hat j+(\vec r.\hat k)\hat k$ Statement-2: If $\vec a, \vec b, \vec c$ are three non-coplanar vectors and $\vec r$ is any vector in space, then $\vec r=\left\{\frac{[\vec r\,\,\vec b\,\,\vec c]}{[\vec a\,\,\vec b\,\,\vec c]}\right\}\vec a+\left\{\frac{[\vec r\,\,\vec c\,\,\vec a]}{[\vec a\,\,\vec b\,\,\vec c]}\right\}\vec b+\left\{\frac{[\vec r\,\,\vec a\,\,\vec b]}{[\vec a\,\,\vec b\,\,\vec c]}\right\}\vec c$ |
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. Statement-1 is True, Statement-2 is False. Statement-1 is False, Statement-2 is True. |
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. |
Since $\vec a, \vec b, \vec c$ are non-coplanar vectors. Therefore, there exist scalars x, y, z such that $\vec r = x\vec a+y\vec b +z\vec c$ ...(i) Taking dot products with $\vec b×\vec c, \vec c×\vec a$ successively, we get $\vec r.(\vec b×\vec c)=(x\vec a+y\vec b +z\vec c). (\vec b×\vec c)$ $\vec r.(\vec b×\vec c)=(x\vec a×y\vec b ×z\vec c). (\vec c×\vec a)$ $\vec r.(\vec b×\vec c)=(x\vec a+y\vec b +z\vec c). (\vec a×\vec b)$ $⇒[\vec r\,\,\vec b\,\,\vec c]=x[\vec a\,\,\vec b\,\,\vec c]$ $[\vec r\,\,\vec c\,\,\vec a]=y[\vec a\,\,\vec b\,\,\vec c]$ and, $[\vec r\,\,\vec a\,\,\vec b]=z[\vec a\,\,\vec b\,\,\vec c]$ $⇒x=\frac{[\vec r\,\,\vec b\,\,\vec c]}{[\vec a\,\,\vec b\,\,\vec c]},y=\frac{[\vec r\,\,\vec c\,\,\vec a]}{[\vec a\,\,\vec b\,\,\vec c]}$ and $z=\frac{[\vec r\,\,\vec a\,\,\vec b]}{[\vec a\,\,\vec b\,\,\vec c]}$ Substituting the values of $x, y, z$ in (i), we get $\vec r=\left\{\frac{[\vec r\,\,\vec b\,\,\vec c]}{[\vec a\,\,\vec b\,\,\vec c]}\right\}\vec a+\left\{\frac{[\vec r\,\,\vec c\,\,\vec a]}{[\vec a\,\,\vec b\,\,\vec c]}\right\}\vec b+\left\{\frac{[\vec r\,\,\vec a\,\,\vec b]}{[\vec a\,\,\vec b\,\,\vec c]}\right\}\vec c$ So, statement-2 is true. On replacing $\vec a, \vec b$ and $\vec c$ by $\hat i,\hat j$ and $\hat k$ respectively in statement-2, we obtain statement-1. So, statement-1 is true and statement-2 is a correct explanation for statement-1. |