The solution of the differential equation $\frac{dy}{dx}=\sqrt{\frac{y}{x}}$ is |
$\sqrt{x}+\sqrt{y} = C$: C is an arbitrary constant $\sqrt{x}-\sqrt{y} = C$: C is an arbitrary constant $\sqrt{\frac{y}{x}}+C=0$: C is an arbitrary constant $\sqrt{\frac{x}{y}}+C=0$: C is an arbitrary constant |
$\sqrt{x}-\sqrt{y} = C$: C is an arbitrary constant |
The correct answer is Option (2) → $\sqrt{x}-\sqrt{y} = C$: C is an arbitrary constant Given: $\frac{dy}{dx} = \sqrt{\frac{y}{x}}$ Let $y = v^2$, then $\frac{dy}{dx} = 2v \frac{dv}{dx}$ So: $2v \frac{dv}{dx} = \sqrt{\frac{v^2}{x}} = \frac{v}{\sqrt{x}}$ Cancel $v$ (assuming $v \ne 0$): $2 \frac{dv}{dx} = \frac{1}{\sqrt{x}}$ $\Rightarrow dv = \frac{1}{2\sqrt{x}} dx$ Integrate both sides: $\int dv = \int \frac{1}{2\sqrt{x}} dx$ $v = \sqrt{x} + C$ Recall: $v = \sqrt{y}$ So, $\sqrt{y} = \sqrt{x} + C$ |