If f : R → A given by $f(x)=x^2-6 x+12$ is a surjective function, then the set A is: |
$(3, \infty)$ $(-\infty, 3)$ $[3, \infty)$ $(-\infty, 3]$ |
$[3, \infty)$ |
The correct answer is Option (3) → $[3, \infty)$ $f(x)=x^2-6 x+12$ Since the coefficient of $x^2$ is positive, the parabola open upwards. The minimum value of $f(x)$ will occur at its vertex. for vertex, $f'(c)=0$ $⇒2c-6=0$ $⇒c=\frac{6}{2}=3$ ∴ f minimum = $f(3)=(3)^2-6(3)+12=3$ ∴ Range (f(x)) = $[3, \infty)$ |