Figure shows a section of an infinite rod of charge having linear charge density λ which is constant for all points on the line. Find electric field E at a distance r from the line. |
$\frac{\lambda}{2 \pi \varepsilon_0 r}$ Zero $\frac{\lambda}{\pi \varepsilon_0 r}$ $\frac{\lambda}{4\pi \varepsilon_0 r}$ |
$\frac{\lambda}{2 \pi \varepsilon_0 r}$ |
From symmetry, $\vec{E}$ due to a uniform linear charge can only be radially directed. As a Gaussian surface, we can choose a circular cylinder of radius r and length l, closed at each end by plane caps normal to the axis. $\varepsilon_0 \oint \vec{E} . d \vec{s}=q_{in}$ $\varepsilon_0\left|\int \vec{E} . d \vec{s}+\int \vec{E} . d \vec{s}\right|=q_{in}$ Cylindrical Plane Surface $\varepsilon_0 E(2 \pi rl)+\int E . ds . \cos 90^{\circ}=\lambda l$ $E=\frac{\lambda l}{\varepsilon_o 2 \pi r l}=\frac{\lambda}{2 \pi \varepsilon_0 r}$ The direction of $\vec{E}$ is radially outward for a line of positive charge. |