The solution of $\left(2 x-10 y^3\right) \frac{dy}{d x}+y=0$ is : |
$x+y=c e^{2 x}$ $y^2=2 x^3+c$ $x y^2=2 y^5+c$ $x\left(y^2+x y\right)=0$ |
$x y^2=2 y^5+c$ |
$y \frac{d x}{d y} \Rightarrow-2 x+10 y^3 \Rightarrow \frac{d x}{d y}+\frac{2 x}{y}=10 y^2$ $\Rightarrow P=\frac{2}{y}, Q=10 y^2$ ∴ I.F. $=e^{\int \frac{2}{y} d y}=e^{2 \log y}=e^{\log y^2}=y^2$ ∴ Solution is $x . y^2=\int y^2 . 10 y^2 d y+c$ $\Rightarrow x . y^2=\frac{10 . y^5}{5}+c$ Hence (3) is the correct answer. |