The function $f : [0, 1] → R$ given by $f(x)=\alpha x^3$ has |
maximum value $\frac{1}{8}$ when $\alpha=1$ minimum value $-\frac{1}{8}$ when $\alpha=-1$ minimum value -1 when $\alpha=-1$ maximum value 1 when $\alpha=-1$ |
minimum value -1 when $\alpha=-1$ |
The correct answer is Option (3) - minimum value -1 when $\alpha=-1$ $f(x)=\alpha x^3$ $f'(x)=αx^2=0⇒x=0$ when $α=1$ $f(0)=0$ $f(1)=1$ when $α=-1$ $f(0)=0$ $f(1)=-1$ min = -1 for $α=-1$ |