If $8x^2 + 9x + 8 = 0$, then the value of $x^3 + \frac{1}{x^3}$ is : |
$\frac{999}{212}$ $\frac{199}{212}$ $\frac{999}{512}$ $\frac{199}{512}$ |
$\frac{999}{512}$ |
If x + \(\frac{1}{x}\) = n then, $x^3 +\frac{1}{x^3}$ = n3 - 3 × n If $8x^2 + 9x + 8 = 0$ Now divide by 8x on both sides of the equation, x + \(\frac{1}{x}\) = \(\frac{-9}{8}\) then, $x^3 +\frac{1}{x^3}$ = ( \(\frac{-9}{8}\) )3 - 3 × \(\frac{9}{8}\) $x^3 +\frac{1}{x^3}$ = \(\frac{-729}{512}\) - \(\frac{27}{8}\) $x^3 +\frac{1}{x^3}$ = \(\frac{-729 + 1728}{512}\) $x^3 +\frac{1}{x^3}$ = $\frac{999}{512}$ |