The cost of a property appreciates by 10% of the previous month every month. If in end march 2024 it was ₹13.31 lakh, when was it ₹10 lakh? |
end-january 2024 end-december 2023 end-february 2024 end-june 2024 |
end-december 2023 |
The correct answer is Option (2) → end-december 2023 Given: Final value in March 2024: $A = 13.31$ lakh Monthly appreciation rate: $r = 10\% = 0.1$ Let the value in month $n$ months before March 2024 be $P$: Compound formula: $A = P (1 + r)^n$ Substitute $P = 10$ lakh, $A = 13.31$ lakh, $r = 0.1$: $13.31 = 10 (1.1)^n \Rightarrow (1.1)^n = 1.331$ Check: $1.1^3 = 1.331 \Rightarrow n = 3$ months Counting backwards from end March 2024: End March → End Feb → End Jan → End Dec 2023 Value was ₹10 lakh at end-December 2023 |