If $3 \sin θ-4 \cos θ=0$, then value of $\tan θ.cosec θ$ is: |
$\frac{4}{3}$ $\frac{16}{15}$ $\frac{5}{3}$ $\frac{12}{5}$ |
$\frac{5}{3}$ |
3sinθ−4cosθ=0 3sinθ = 4cosθ Tanθ = 4/3 Cotθ = 3/4 (Cotθ)^2 = (3/4)^2 1+ (Cotθ)^2 = 1+ (3/4)^2 (Cosecθ)^2 = 1+ 9/16 = 25/16 Cosecθ = 5/4 Tanθ.Cosecθ = 4/3 * 5/4 = 5/3 The correct answer is Option (3) → $\frac{5}{3}$ |