1000 small water drops each of radius r and charge q coalesces together to form one big spherical drop. The potential of the big drop is larger than that of the smaller drop by a factor of: |
1000 100 10 1 |
100 |
The correct answer is Option (2) → 100 Volume of each small drop, $V_{small}=\frac{4}{3}πr^3$ Total volume of large drop, (R - Radius of large drop) $V_{large}=N×\frac{4}{3}πr^3=1000×\frac{4}{3}πr^3$ $⇒×\frac{4}{3}πR^3=1000×\frac{4}{3}πr^3$ $⇒R=10r$ The Potential V of a spherical drop, $V=\frac{kq}{R}=\frac{k×1000q}{10r}$ $∴\frac{V_{large}}{V_{small}}=\frac{\frac{k×1000q}{10r}}{\frac{kq}{r}}=100$ |