$\int e^{-x} (\cot x + cosec^2x)dx =$ |
$e^{-x}\cot x + c$, where c is an arbitrary constant. $-e^{-x}\cot x + c$, where c is an arbitrary constant. $-e^{-x}\,cosec\,x + c$, where c is an arbitrary constant. $e^{-x}\,cosec\,x + c$, where c is an arbitrary constant. |
$-e^{-x}\cot x + c$, where c is an arbitrary constant. |
The correct answer is Option (2) → $-e^{-x}\cot x + c$, where c is an arbitrary constant. Given integral: $\int e^{-x}(\cot x + \csc^2 x)\,dx$ Break it into two parts: $= \int e^{-x} \cot x\,dx + \int e^{-x} \csc^2 x\,dx$ Use integration by parts on both terms. For $\int e^{-x} \cot x\,dx$: Let $u = \cot x$, $dv = e^{-x} dx$ $\Rightarrow du = -\csc^2 x dx$, $v = -e^{-x}$ $\int e^{-x} \cot x\,dx = -e^{-x} \cot x - \int (-e^{-x})(-\csc^2 x) dx$ $= -e^{-x} \cot x - \int e^{-x} \csc^2 x dx$ Add $\int e^{-x} \csc^2 x dx$ to both sides: $\int e^{-x}(\cot x + \csc^2 x)\,dx = -e^{-x} \cot x + C$ |