Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Matrices

Question:

If $\begin{bmatrix}2x+1&5x\\0&y^2+1\end{bmatrix} = \begin{bmatrix}x+3&10\\0&26\end{bmatrix}$, then the possible values of $x + y$ are:

Options:

2 and 5

5 and -1

7 and -3

2 and -5

Correct Answer:

7 and -3

Explanation:

The correct answer is Option (3) → 7 and -3

Given matrix equality:

$\begin{bmatrix} 2x + 1 & 5x \\ 0 & y^2 + 1 \end{bmatrix} = \begin{bmatrix} x + 3 & 10 \\ 0 & 26 \end{bmatrix}$

Equating corresponding elements:

$2x + 1 = x + 3 \Rightarrow x = 2$

$5x = 10 \Rightarrow x = 2$ (confirms value)

$y^2 + 1 = 26 \Rightarrow y^2 = 25 \Rightarrow y = \pm 5$

Possible values of $x + y$:

$x = 2$, so $x + y = 2 + 5 = 7$ or $2 - 5 = -3$