$\int \frac{d x}{e^x+e^{-x}}$ is equal to: |
$\tan ^{-1}\left(e^x\right)+c$, where c is a constant $\tan ^{-1}\left(e^{-x}\right)+c$, where c is a constant $\tan ^{-1}\left(e^x+e^{-x}\right)+c$, where c is a constant $\log _e\left(e^x+e^{-x}\right)+c$, where c is a constant |
$\tan ^{-1}\left(e^x\right)+c$, where c is a constant |
The correct answer is Option (1) → $\tan ^{-1}\left(e^x\right)+c$, where c is a constant $\int \frac{d x}{e^x+e^{-x}}=\int\frac{e^x}{1+(e^x)^2}dx$ let $y=e^x$ $dy=e^xdx$ $⇒\int\frac{dy}{1+x^2}=\tan^{-1}(y)+c$ $=\tan ^{-1}\left(e^x\right)+c$ |