For matrix $A=\begin{bmatrix} 3 & 1\\7 & 5\end{bmatrix},$ the values of x and y so that $A^2+xI=yA$ are : |
$x=6, y = 8 $ $x=8, y = 6 $ $x=8, y = 8$ $x=6, y = 6 $ |
$x=8, y = 8$ |
The correct answer is Option (3) → $x=8, y = 8$ $A^2+xI=yA$ and, $A=\begin{bmatrix}3&1\\7&5\end{bmatrix}$ $∴A^2+xI=\begin{bmatrix}16+x&8\\56&32+x\end{bmatrix}=y\begin{bmatrix}3&1\\7&5\end{bmatrix}$ $⇒(x,y)=(8,8)$ |