The area of the right-angled isosceles triangle having hypotenuse A cm is: |
$\frac{A^2}{2}$ $\frac{A^2}{8}$ $\frac{A^2}{4}$ $\frac{A^2}{3}$ |
$\frac{A^2}{4}$ |
The correct answer is Option (3) → $\frac{A^2}{4}$ Given: A right-angled isosceles triangle with hypotenuse = $A$ cm. In a right-angled isosceles triangle, the two perpendicular sides are equal. Let each side be $x$. By Pythagoras theorem: $x^2 + x^2 = A^2$ $2x^2 = A^2$ $x^2 = \frac{A^2}{2}$ Area of a triangle = $\frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times x \times x = \frac{1}{2}x^2$ Substitute $x^2$: Area = $\frac{1}{2} \cdot \frac{A^2}{2} = \frac{A^2}{4}$ |