The differential equation of all non-horizontal lines in a plane, is |
$\frac{d^2 y}{d x^2}$ $\frac{d^2 x}{d y^2}=0$ $\frac{d y}{d x}=0$ $\frac{d x}{d y}=0$ |
$\frac{d^2 x}{d y^2}=0$ |
The general equation of all non-horizontal lines in $x y$-plane is $a x+b y=1$, where $a \neq 0$. Now, $a x+b y=1$ $\Rightarrow a \frac{d x}{d y}+b=0$ [Diff. w.r. to y] $\Rightarrow a \frac{d^2 x}{d y^2}=0$ [Diff. w.r. to y] $\Rightarrow \frac{d^2 x}{d y^2}=0$ [∵ a ≠ 0] Hence, the required differential equation is $\frac{d^2 x}{d y^2}=0$ |