If $x + \frac{1}{3x} = 5, $ then the value of $27x^3 +\frac{1}{x^3}$ will be : |
3240 3024 3042 3420 |
3240 |
If $x + \frac{1}{3x} = 5, $ then the value of $27x^3 +\frac{1}{x^3}$ will be = ? If $K+\frac{1}{K}=n$ then, $K^3+\frac{1}{K^3}$ = n3 – 3 × k × \(\frac{1}{k}\) If $x + \frac{1}{3x} = 5, $ Then $x^3 +\frac{1}{27x^3}$ = 53 – 3 × 5 ÷ 3 = 120 Multiply the whole equation by 27 to get the desired form of equation, and the value of $27x^3 +\frac{1}{x^3}$ = 120 × 27 = 3240 |