If $y=sin^{-1}x,$ then $(1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}$ is : |
-1 2 0 -2 |
0 |
The correct answer is Option (3) → 0 $y=sin^{-1}x⇒\frac{dy}{dx}=\frac{1}{\sqrt{1-x^2}}$ so $\frac{d^2y}{dx^2}=\frac{-1}{2\sqrt{1-x^2}}\frac{(-2x)}{(1-x^2)}=\frac{x}{\sqrt{1-x^2}(1-x^2)}$ so $(1-x^2)\frac{d^2y}{dx^2}=x\frac{dy}{dx}$ $⇒(1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}=0$ |