A circular wire of radius R carries a total charge Q distributed uniformly over its circumference. A small length of the wire subtending angle θ at the centre is cut off. Find the electric field at the centre due to the remaining portion. |
$\frac{Q}{4 \pi^2 \varepsilon_0 R^2} \sin (\theta)$ $\frac{Q}{4 \pi^2 \varepsilon_0 R^2} \sin \left(\frac{\theta}{2}\right)$ $\frac{Q}{4 \pi^2 \varepsilon_0 R^2} \sin \left(\frac{\theta}{4}\right)$ $\frac{Q}{4 \pi^2 \varepsilon_0 R^2} \sin \left(\frac{\theta}{8}\right)$ |
$\frac{Q}{4 \pi^2 \varepsilon_0 R^2} \sin \left(\frac{\theta}{2}\right)$ |
Electric field due to an arc at its centre is $\frac{k \lambda}{R} 2 \sin \left(\frac{\theta}{2}\right), \text { Where } k=\frac{1}{4 \pi \varepsilon_0}$, $\theta=$ angle subtended by the wire at the centre, Let E be the electric field due to remaining portion. Since intensity at the centre due to the circular wire is zero. Applying principle of superposition. $\frac{k \lambda}{R} 2 \sin \left(\frac{\theta}{2}\right) \hat{n}+\vec{E}=0$ $|\vec{E}|=\frac{1}{4 \pi \varepsilon_0 R} \cdot \frac{Q}{2 \pi R} . 2 \sin \left(\frac{\theta}{2}\right)$ $=\frac{Q}{4 \pi^2 \varepsilon_0 R^2} \sin \left(\frac{\theta}{2}\right)$ |