A convex mirror of focal length f produces an image $\left(\frac{1}{n}\right)^{th}$ of the size of the object. The distance of the object from the mirror is |
$nf$ $f/n$ $(n+1)/f$ $(n-1)/f$ |
$(n-1)/f$ |
$ m = \frac{1}{n} = -\frac{v}{-u}$ $ v = \frac{u}{n}$ Mirror Equation $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ $ \frac{n}{u} + \frac{1}{-u} = \frac{1}{f}$ $\Rightarrow u = (n - 1)f$ |