\(\int_{-\pi}^{\pi}\frac{\cos x}{1+a^x}dx=\) |
\(\pi\) \(\frac{\pi}{3}\) 0 \(\frac{\pi}{2}\) |
0 |
The correct answer is Option (3) → 0 \(I=\int_{-\pi}^{\pi}\frac{\cos x}{1+a^x}dx\) ...(1) $I=\int_{-\pi}^{\pi}\frac{\cos(π-π-x)}{1+a^{π-πx}}dx$ $I=\int_{-\pi}^{\pi}\frac{\cos x}{1+a^{-x}}dx=\int_{-\pi}^{\pi}\frac{a^x\cos x}{1+a^x}dx$ ....(2) eq (1) + eq (2) so $2I=\int_{-\pi}^{\pi}\frac{(1+a^x)}{(1+a^x)}\cos x dx$ $2I=\int_{-\pi}^{\pi}\cos x dx$ $⇒I=0$ |