\(\int_{-\pi}^{\pi}\frac{\cos x}{1+a^x}dx=\) |
\(\pi\) \(\frac{\pi}{3}\) 0 \(\frac{\pi}{2}\) |
0 |
The correct answer is Option (3) → 0 \(I=\int\limits_{-\pi}^{\pi}\frac{\cos x}{1+a^x}dx\) ...(1) $=\int\limits_{-\pi}^{\pi}\frac{\cos(π-π-x)}{1+a^{π-π-x}}dx$ $=\int\limits_{-\pi}^{\pi}\frac{\cos (-x)}{1+a^{-x}}dx$ $I=\int\limits_{-\pi}^{\pi}\frac{a^x\cos x}{1+a^x}dx$ ....(2) Add eq. (1) + eq. (2) $2I=\int\limits_{-\pi}^{\pi}\cos x dx$ $=\left[\sin x\right]_{-\pi}^{\pi}$ $=[\sin \pi+\sin \pi]$ $=0$ |