If $A (x_1,y_1), B(x_2, y_2)$ and $C (x_3, y_3)$ are vertices of an equilateral triangle whose each side is equal to a, then find $\begin{vmatrix}x_1&y_1&2\\x_2& y_2&2\\x_3&y_3&2\end{vmatrix}$ is equal to |
$2a^2$ $2a^4$ $3a^2$ $3a^4$ |
$3a^4$ |
Let Δ be the area of triangle ABC. Then, $Δ=\frac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2& y_2&1\\x_3&y_3&1\end{vmatrix}⇒2Δ\begin{vmatrix}x_1&y_1&1\\x_2& y_2&1\\x_3&y_3&1\end{vmatrix}$ $⇒4Δ=2\begin{vmatrix}x_1&y_1&1\\x_2& y_2&1\\x_3&y_3&1\end{vmatrix}=\begin{vmatrix}x_1&y_1&2\\x_2& y_2&2\\x_3&y_3&2\end{vmatrix}$ $⇒16Δ^2=\begin{vmatrix}x_1&y_1&2\\x_2& y_2&2\\x_3&y_3&2\end{vmatrix}^2$ ...(i) But, the area of equilateral triangle with each side equal to a is $\frac{\sqrt{3}}{4}a^2$. $∴Δ=\frac{\sqrt{3}}{4}a^2⇒16Δ^2=3a^4$ ...(ii) Form (i) and (ii), we obtain $\begin{vmatrix}x_1&y_1&2\\x_2& y_2&2\\x_3&y_3&2\end{vmatrix}^2=3a^4$ |