If $\frac{cosA}{cosecA+1}+\frac{cosA}{cosecA-1}= 2, 0° ≤ A ≤ 90°$, then A is equal to : |
60° 45° 90° 30° |
45° |
Given :- \(\frac{cosA }{cosecA + 1 }\) + \(\frac{cosA }{cosecA - 1 }\) = 2 \(\frac{cosA ( cosecA-1) + cosA(cosecA +1 ) }{cosec²A - 1 }\)= 2 We know , { cosec²A - 1 = cot²A } \(\frac{2cosA.cosecA }{cot²A }\)= 2 \(\frac{cosA.cosecA }{cos²A / sin²A }\) = 1 \(\frac{cosecA }{cosA / sin²A }\) = 1 tanA = 1 Ans we know that , tan45º = 1 So, A = 45º
|