A uniform force of \((3\hat{i}+\hat{j})\) newton acts on a particle of mass 2 kg. Hence the particle is displaced from position \((2\hat{i}+\hat{k})\) meter to position \((4\hat{i}+3\hat{j}+\hat{k})\) meter. The work done by the force on the particle is : |
15 J 9 J 6 J 13 J |
9 J |
$\vec{F} = (3\hat{i}+\hat{j})$ $R_i = 2\hat{i}+\hat{k}$ $R_f = 4\hat{i}+3\hat{j}+\hat{k}$ Displacement $\vec{S} = \vec{R_f}-\vec{R_i} = 2\hat{i}+3\hat{j}$ \( W = \vec{F}.\vec{S}\) \( W = 9 J \) |