If $a=\frac{2+\sqrt{3}}{2-\sqrt{3}}$ and $b = \frac{2-\sqrt{3}}{2+\sqrt{3}}$, then the value of $a^2 + b^2 +ab$ is: |
195 185 196 186 |
195 |
$a=\frac{2+\sqrt{3}}{2-\sqrt{3}}$ $b = \frac{2-\sqrt{3}}{2+\sqrt{3}}$, then the value of $a^2 + b^2 +ab$ When a fraction is in the form of $m=\frac{a+\sqrt{b}}{a-\sqrt{b}}$ and $m=\frac{a-\sqrt{b}}{a+\sqrt{b}}$ the difference between the square of a and square of b is equal to 1 then we can say, m = (a + b)2 and also n = (a - b)2 So, a = (2 + \(\sqrt {3}\))2 = 7 + 2\(\sqrt {3}\) b = 7 - 2\(\sqrt {3}\) and ab = 1 So, $a^2 + b^2 +ab$ = (a + b)2 - ab = ( 7 + 2\(\sqrt {3}\) + 7 - 2\(\sqrt {3}\))2 - 1 = 196 - 1 = 195 |