Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Relations and Functions

Question:

If $\left(\log _5 x\right)^2+\log _5 x<2$, then x belong to:

Options:

$\left(\frac{1}{25}, 5\right)$

$\left(\frac{1}{5}, \frac{1}{\sqrt{5}}\right)$

$(1, \infty)$

none of these

Correct Answer:

$\left(\frac{1}{25}, 5\right)$

Explanation:

We have $\left(\log _5 x\right)^2+\log _5 x<2$

Put $\log _5 x=a$ then $a^2+a<2$

$\Rightarrow a^2+a-2<0 \Rightarrow(a+2)(a-1)<0$

$\Rightarrow-2<a<1 \text { or }-2<\log _5 x<1$

∴ $5^{-2}<x<5$

i.e. $1 / 25<x<5$

Hence (1) is the correct answer.