Target Exam

CUET

Subject

General Test

Chapter

Quantitative Reasoning

Topic

Trigonometry

Question:

Find the value of cot θ.tan(90 - θ) - sec (90 - θ) cosec θ + (sin2 25° + sin2 65° ) + \(\sqrt {3 }\)(tan 30° tan 35° tan 55°).

Options:

1

\(\sqrt {3 }\)

0

\(\sqrt {3 }\) - 1

Correct Answer:

1

Explanation:

cot θ.tan (90 - θ) - sec (90 - θ). cosec θ + (sin2 25° + sin2 65°)

+ \(\sqrt {3 }\) ( tan 35° tan 30° tan 55°)

= cot θ.cot θ - cosec θ. cosec θ + (sin2 25° + cos2 25°)

+ \(\sqrt {3 }\)(tan 30° tan 35° cot 35°)

= cot2 θ - cosec2 θ + (1) + \(\sqrt {3 }\)\(\frac{1}{\sqrt {3 }}\)

= -1 + 1 + 1 = 1 ( because sin2 θ + cos2 θ = 1 ⇒ tan θ cot θ = 1 × cot2 θ - cosec2 θ = 1)