The integral $\int\frac{e^{-x}}{9+4e^{-2x}}dx$ is equal to |
$\frac{1}{6}\tan^{-1}\left(\frac{2e^{-x}}{3}\right)+C$ $-\frac{1}{6}\tan^{-1}\left(\frac{2e^{-x}}{3}\right)+C$ $\frac{1}{12}\tan^{-1}\left(\frac{2e^{-x}}{3}\right)+C$ $-\frac{1}{12}\tan^{-1}\left(\frac{2e^{-x}}{3}\right)+C$ |
$-\frac{1}{6}\tan^{-1}\left(\frac{2e^{-x}}{3}\right)+C$ |
$I=\int\frac{e^{-x}}{9+4e^{-2x}}dx$ let $y=e^{-x}$ $dy=-e^{-x}dx⇒-dy=e^{-x}dx$ $I=-\int\frac{dy}{9+4y^2}⇒I=\frac{-1}{4}\int\frac{dy}{(3/2)^2+y^2}$ $⇒I=\frac{-1}{4}×\frac{2}{3}\tan^{-1}\frac{2y}{3}+C$ $⇒I=-\frac{1}{6}\tan^{-1}\left(\frac{2e^{-x}}{3}\right)+C$ |