If $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$ where $\vec{c} \neq \vec{0}$, then: |
$|\vec{a}|=|\vec{c}|,|\vec{b}|=1$ $|\vec{a}|=|\vec{b}|,|\vec{c}|=1$ $|\vec{b}|=|\vec{c}|,|\vec{a}|=1$ $|\vec{a}|=|\vec{b}|,|\vec{c}|=1$ |
$|\vec{a}|=|\vec{c}|,|\vec{b}|=1$ |
$\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$ Taking cross with $\vec{b}$ in first equation, we get $\vec{b} \times(\vec{a} \times \vec{b})=\vec{b} \times \vec{c}=\vec{a}$ $\Rightarrow|\vec{b}|^2 \vec{a}-(\vec{a} . \vec{b}) \vec{b}=\vec{a}$ $\Rightarrow|\vec{b}|^2=1$ and $\vec{a} . \vec{b}=0$ Also, $|\vec{a} \times \vec{b}|=|\vec{c}|$ $\Rightarrow|\vec{a}||\vec{b}| \sin \frac{\pi}{2}=|\vec{c}|$ $\Rightarrow|\vec{a}|=|\vec{c}|$ Hence (1) is correct answer. |