$\triangle \mathrm{ABC}$ is an equilateral triangle. $\mathrm{D}$ is a point on side $\mathrm{BC}$ such that $\mathrm{BD}: \mathrm{BC}=1: 3$. If $\mathrm{AD}=5 \sqrt{7} \mathrm{~cm}$, then the side of the triangle is: |
20 cm 18 cm 15 cm 12 cm |
15 cm |
Using cosine rule = cos 60 = [\( {(1x) }^{2 } \) + \( {(3x) }^{2 } \) - \( {(5√7) }^{2 } \)]/(2 × 1x × 3x) = \(\frac{1}{2}\) = (\( {1x }^{2 } \) + \( {9x }^{2 } \) - 175)/(2 × \( {3x }^{2 } \)) = \( {3x }^{2 } \) = \( {10x }^{2 } \) - 175 = (\( {10x }^{2 } \) - \( {3x }^{2 } \)) = 175 = \( {7x }^{2 } \) = 175 = \( {x }^{2 } \) = \(\frac{175}{7}\) = \( {x }^{2 } \) = 25 = x = 5 cm Now, The side of an equilateral triangle = 3x = (3 x 5) = 15 cm. Therefore, answer is 15 cm. |