A random variable X has the following probability distribution:
The variance of X will be |
4.8 1.29 5.1 4.9 |
1.29 |
The correct answer is Option (2) → 1.29 Given probability distribution: $X$: 0, 1, 2, 3 $P(X)$: 0.2, 0.1, 0.3, 0.4 Mean (expected value) $\mu = E(X) = \sum X \cdot P(X)$ $\mu = 0 \cdot 0.2 + 1 \cdot 0.1 + 2 \cdot 0.3 + 3 \cdot 0.4 = 0 + 0.1 + 0.6 + 1.2 = 1.9$ Variance: $\sigma^2 = E(X^2) - (E(X))^2$ $E(X^2) = \sum X^2 \cdot P(X) = 0^2 \cdot 0.2 + 1^2 \cdot 0.1 + 2^2 \cdot 0.3 + 3^2 \cdot 0.4 = 0 + 0.1 + 1.2 + 3.6 = 4.9$ $\sigma^2 = 4.9 - (1.9)^2 = 4.9 - 3.61 = 1.29$ |