The sum of the order and degree of the differential equation $\frac{d^2y}{dx^2}+\sqrt{\frac{dy}{dx}}+(1+x)=0$ is : |
3 4 5 6 |
4 |
The correct answer is Option (2) → 4 $\frac{d^2y}{dx^2}+(1+x)=-\sqrt{\frac{dy}{dx}}$ Squaring both side $\left(\frac{d^2y}{dx^2}\right)^2+(1+x)^2+2\frac{d^2y}{dx^2}(1+x)=\frac{dy}{dx}$ order = 2, degree = 2 So $2+2=4$ |