Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Inverse Trigonometric Functions

Question:

In a triangle ABC, $a(b \cos C - c \cos B)$, is :

Options:

$a^2$

$b^2-c^2$

0

None of these

Correct Answer:

$b^2-c^2$

Explanation:

$a =b \cos C + c \cos B$

$⇒a (b \cos C - c \cos B)=(b \cos C + c \cos B)×(b \cos C - c \cos B)$

$⇒b^2\cos^2C-c^2\cos^2B$

$=b^2(1- \sin^2C) - c^2(1- \sin^2 B)$

$=(b^2 - c^2)-b^2\sin^2C+c^2\sin^2B$ [by sine rule : $b \sin C = c \sin B$]

$⇒b^2 - c^2$