Integral of $\frac{1}{1+(\log x)^2}$ w.r.t. log x is: |
$\frac{\tan^{-1}(\log x)}{x}+C$ $\tan^{-1}(\log x)+C$ $\frac{\tan^{-1}x}{x}+C$ None of these |
$\tan^{-1}(\log x)+C$ |
$\frac{1}{1+(\log x)^2}d(\log x)=\int\frac{dt}{1-t^2}$ [Putting log x = t ⇒ $d(\log x)=dt=\tan^{-1}t+C=\tan^{-1}(\log x)+C$ |