If $A=\begin{bmatrix}2a & 0 & 0\\0 & 2a & 0 \\0 & 0 & 2a\end{bmatrix}$, then the value of |adj A| is : |
$64a^6$ $8a^3$ $64a^3$ $8a^6$ |
$64a^6$ |
The correct answer is Option (1) → $64a^6$ $A=\begin{bmatrix}2a & 0 & 0\\0 & 2a & 0 \\0 & 0 & 2a\end{bmatrix}$ $|A|=(2a)^3=8a^3$ $|Adj\,A|=|A|^{n-1}$ n → order of A $|Adj\,A|=|A|^2=64a^6$ |