If α is an acute angle, which of the following options will NOT necessarily be equal to the value of sec α? |
$\frac{1}{cosα}$ $\frac{1}{sinα}$ $\sqrt{1+tan^2α}$ $\frac{tanα}{sinα}$ |
$\frac{1}{sinα}$ |
We know, Sec α = \(\frac{1}{cosα}\) And sec² α - tan² α = 1 sec² α = 1 + tan² α sec α = \(\sqrt { 1 + tan² α }\) And , sec α = \(\frac{1}{cosα}\) multiply and divide by sinα . sec α = \(\frac{1}{cosα}\) × \(\frac{sinα}{sinα}\) = \(\frac{tanα}{sinα}\) But secα ≠ \(\frac{1}{sinα}\) |