Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Question:

A random variable y has the following probability distribution

y

1

2

3

4

5

P(y)

2k

3k

k

4k

5k

Match List-I with List-II

List-I

List-II

(A) $P(y > 2)$

(I) 2/5

(B) $k$

(II) 2/3

(C) $P(y ≤3)$

(III) 8/15

(D) $P(2≤ y ≤ 4)$

(IV) 1/15

Choose the correct answer from the options given below:

Options:

(A)-(III), (B)-(IV), (C)-(I), (D)-(II)

(A)-(II), (B)-(I), (C)-(IV), (D)-(III)

(A)-(II), (B)-(IV), (C)-(I), (D)-(III)

(A)-(IV), (B)-(III), (C)-(II), (D)-(I)

Correct Answer:

(A)-(II), (B)-(IV), (C)-(I), (D)-(III)

Explanation:

The correct answer is Option (3) → (A)-(II), (B)-(IV), (C)-(I), (D)-(III)

List-I

List-II

(A) $P(y > 2)$

(II) 2/3

(B) $k$

(IV) 1/15

(C) $P(y ≤3)$

(I) 2/5

(D) $P(2≤ y ≤ 4)$

(III) 8/15

Given probability distribution:

y: 1, 2, 3, 4, 5

P(y): 2k, 3k, k, 4k, 5k

Sum of probabilities = 1 ⇒ 2k + 3k + k + 4k + 5k = 15k = 1 ⇒ k = \frac{1}{15}

Compute required probabilities:

(A)$ P(y > 2) = P(3) + P(4) + P(5) = k + 4k + 5k = 10k = \frac{10}{15} = \frac{2}{3}$

(B) $k = \frac{1}{15}$

(C) $P(y ≤ 3) = P(1) + P(2) + P(3) = 2k + 3k + k = 6k = \frac{6}{15} = \frac{2}{5}$

(D) $P(2 ≤ y ≤ 4) = P(2) + P(3) + P(4) = 3k + k + 4k = 8k = \frac{8}{15}$