If $F:[1,∞) → [2, ∞)$ is given by $f(x) = x +\frac{1}{x}$, then $f^{-1}(x)$ equals. |
$\frac{x+\sqrt{x^2-4}}{2}$ $\frac{x}{1+x^2}$ $\frac{x-\sqrt{x^2-4}}{2}$ $1+\sqrt{x^2-4}$ |
$\frac{x+\sqrt{x^2-4}}{2}$ |
The correct answer is Option (2) → $\frac{x+\sqrt{x^2-4}}{2}$ Clearly, $f: [1, ∞) → [2, ∞)$ is a bijection. Let $f(x) = y$. Then, $⇒x +\frac{1}{x}=y$ $⇒x^2-xy+1=0$ $⇒x=\frac{y±\sqrt{y^2-4}}{2}$ $⇒x=\frac{y+\sqrt{y^2-4}}{2}$ $[∵x≥1]$ $⇒f^{-1}(y)=\frac{y+\sqrt{y^2-4}}{2}$ Hence, $f^{-1}(x)=\frac{x+\sqrt{x^2-4}}{2}$ for all $x∈[1, ∞)$ |