Target Exam

CUET

Subject

Mathematics

Chapter

Relations and Functions

Question:

If $F:[1,∞) → [2, ∞)$ is given by $f(x) = x +\frac{1}{x}$, then $f^{-1}(x)$ equals.

Options:

$\frac{x+\sqrt{x^2-4}}{2}$

$\frac{x}{1+x^2}$

$\frac{x-\sqrt{x^2-4}}{2}$

$1+\sqrt{x^2-4}$

Correct Answer:

$\frac{x+\sqrt{x^2-4}}{2}$

Explanation:

The correct answer is Option (2) → $\frac{x+\sqrt{x^2-4}}{2}$

Clearly, $f: [1, ∞) → [2, ∞)$ is a bijection.

Let $f(x) = y$. Then,

$⇒x +\frac{1}{x}=y$

$⇒x^2-xy+1=0$

$⇒x=\frac{y±\sqrt{y^2-4}}{2}$

$⇒x=\frac{y+\sqrt{y^2-4}}{2}$    $[∵x≥1]$

$⇒f^{-1}(y)=\frac{y+\sqrt{y^2-4}}{2}$

Hence, $f^{-1}(x)=\frac{x+\sqrt{x^2-4}}{2}$ for all $x∈[1, ∞)$