The relation ''less than'' in the set of natural numbers is: |
Only symmetric Only transitive Only reflexive Equivalence relation |
Only transitive |
For any $x∈R$ $x<x$ (not possible), not reflexive $(x,y)∈R⇒(y,x)∈R$ $x<y⇒y<x$ → not symmetric $(x,y)∈R⇒(y,z)∈R$ $x<y,\,y<z$ → transitive onle $⇒(x,z)∈R$ |