Two dice are thrown simultaneously. If X denotes the number of sixes, then the variance of X is: |
$\frac{5}{18}$ $\frac{7}{18}$ $\frac{1}{3}$ $\frac{2}{3}$ |
$\frac{5}{18}$ |
Probability of six $P=\frac{1}{6}$ $\bar P=q=\frac{5}{6}$
$E(X)=∑P(xi)xi=0×(\frac{5}{6})^2+2×\frac{5}{6^2}+2×\frac{1}{6^2}$ $=\frac{10}{36}+\frac{2}{36}=\frac{12}{36}=\frac{1}{3}=E(X)$ $E(x^2)=0^2×(\frac{5}{6})^2+1^2\frac{2×5}{6^2}+4×\frac{1}{6^2}=\frac{10}{36}+\frac{4}{36}=\frac{14}{36}=E(x^2)$ $σ^2$ (variance) = $E(x^2)-E(x)^2=\frac{14}{36}-\frac{1}{9}=\frac{14-4}{36}=\frac{10}{36}$ $=\frac{5}{18}$ |