The area of the region enclosed by $y=x+2$ and $y=x^2+x-2$ is : |
$\frac{8}{3}units^2$ $\frac{32}{3}units^2$ $\frac{16}{3}units^2$ $\frac{4}{3}units^2$ |
$\frac{32}{3}units^2$ |
The correct answer is Option (2) → $\frac{32}{3}units^2$ $y=x^2+x-2⇒y=(x+2)(x-1)$ ...(1) $y=x+2$ ...(2) finding intersection points $(x+2)=(x+2)(x-1)$ $(x+2)(x-2)=0$ $x=2,-2$ $y=4,0$ area = $-\int\limits_{-2}^1(x^2+x-2)dx+\int\limits_{-2}^2x+2dx-\int\limits_{1}^2x^2+x-2dx$ $=-\left[\frac{x^3}{3}+\frac{x^2}{2}-2x\right]_{-2}^1+\left[\frac{x^2}{2}+2x\right]_{-2}^2-\left[\frac{x^3}{3}+\frac{x^2}{2}-2x\right]_1^2$ $=\frac{32}{3}units$ |