If $A=\left[\begin{array}{cc}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]$, and $A+A'=I$, then the value of '$\alpha$' is: |
$\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{6}$ $\frac{\pi}{2}$ |
$\frac{\pi}{6}$ |
The correct answer is Option (3) → $\frac{\pi}{6}$ $A+A^T=I$ $⇒\left[\begin{array}{cc}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]+\left[\begin{array}{cc}\sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha\end{array}\right]=I$ $⇒\begin{bmatrix}2\sin α&0\\0&2\sin α\end{bmatrix}=I$ so $2\sin α=1$ $\sin α=\frac{1}{2}$ $α=\frac{\pi}{6}$ |