The relation R on the set N × N defined by (a, b) R(c, d) ⇔ a + d = b + c ∀ (a, b), (c, d), ∈ N × N is ,where N is set of natural number : |
Reflexive but not symmetric Symmetric but not symmetric Transitive but not reflexive Equivalence |
Equivalence |
The correct answer is Option (4) → Equivalence (1) Reflexive for every $(a, b)∈N×N,(a+b)=(b+a)$ (2) Symmetric for every $(a,b)R(c,d)$, $(a+b)=(c+d)$ $⇒(c+d)=(b+a)⇒(c,d)R(a,b)$ (3) Transitive for every $(a,b)R(c,d),(c,d)R(e,f)$ $a+b=d+c,c+d=f+e$ $⇒a+b=f+e,⇒(a,b)R(e,f)$ ⇒ Equivalence relation |