The least possible value of \(a\) for which the function \(f(x)=x^{2}+ax+1\) may be increasing in the interval \([1,0]\) is |
\(2\) \(1\) \(0\) \(-2\) |
\(-2\) |
\(f^{\prime}(x)=2x+a\hspace{10cm}\) For \(a=-2\) then \(f^{\prime}(x)=2x-2>0\) for \(x>1\) |