The solution of a non-volatile solute in water freezes at −0.30°C. The vapour pressure of pure water is 23.51 mm Hg and Kf for water is 1.86 degrees/molal. What is the vapour pressure of the solution at 298 K? |
24.432 mm 44.223 mm 23.442 mm 34.242 mm |
23.442 mm |
The correct answer is option 3. 23.442 mm Given, Vapour pressure of the pure solvent, \(p_0 = 23.1 mm\) Cryoscopic constant, \(K_f = 1.86\) degree/molal Depression in freezing point, \(\Delta T = −0.30^oC\) \(\Delta T = K_f\text{ × }Molality\) ⇒ \(0.3 = 1.86\text{ × }Molality\) ∴ \(\text{Molality = }0.161\) Now, \(Molality \text{ = }\frac{X_A × 1000}{(1 − X_A) × m_B}\) ⇒\(0.161 \text{ = }\frac{X_A × 1000}{(1 − X_A) × 18}\) ⇒\(1 − X_A \text{ = }\frac{X_A × 1000}{0.161 × 18}\) ⇒\(1 − X_A \text{ = }\frac{X_A × 1000}{2.898}\) ⇒\(1 − X_A \text{ = }X_A × 345.06\) ⇒\(\frac{1}{X_A} − 1 = 345.06\) ⇒\(\frac{1}{X_A} = 346.06\) ⇒\(X_A = \frac{1}{346.06}\) ∴ \(X_A = 0.00289\) Also, \(\frac{\Delta p}{p_0} = X_A\) ⇒\(\frac{p_0 − p_s}{p_0} = X_A\) ⇒\(\frac{23.51 − p_s}{23.51} = 0.00289\) ⇒\(\frac{23.51 − p_s}{23.51} = 0.00289\) ⇒\(23.51 − p_s = 0.00289 × 23.51\) ⇒\(23.51 − p_s = 0.00289 × 23.51\) ⇒\(p_s = 23.51 − (0.00289 × 23.51)\) ∴ \(p_s = 23.442 mm\) |