If $x + \frac{1}{x}= 8, $ then find the value of $\frac{5x}{x^2+1-6x}$. |
2.5 6 5 6.5 |
2.5 |
If $x + \frac{1}{x}= 8, $ then find the value of $\frac{5x}{x^2+1-6x}$ We can write $\frac{5x}{x^2+1-6x}$ as $\frac{5}{x+\frac{1}{x}-6}$ So, according to the question, $\frac{5}{x+\frac{1}{x}-6}$ = $\frac{5}{8-6}$ $\frac{5}{x+\frac{1}{x}-6}$ = $\frac{5}{2}$ = 2.5 |