A long straight wire AB carries current 10 A. A proton (P) travels with a speed $2×10^6 m/s$, parallel to the wire, at a distance 2 m from it in a direction opposite to the current as shown in figure. The force experienced by the proton is: $(μ_0=4π×10^{-7}NA^{-2})$ |
$4×10^{-2}N$ $6×10^{-10}N$ $3.2×10^{-19}N$ $6.9×10^{-13}N$ |
$3.2×10^{-19}N$ |
The correct answer is Option (3) → $3.2×10^{-19}N$ The magnetic field (B) at a distance (r) from a straight wire carrying current (I) is: $B=\frac{μ_0I}{2πr}$ [formula] $μ_0=4π×10^{-7}$ $I=10A$ $r=2m$ $B=\frac{4π×10^{-7}×10}{2π×2}=1×10^{-6}T$ Now, Magnetic force, $F=qvB\sin θ$ where, q, charge of proton = $1.6×10^{-19}C$ v, velocity of proton = $2×10^6m/s$ B, Magnetic field = $1×10^{-6}T$ θ, ($\vec v$ is perpendicular to $\vec B$) = 90° $F=1.6×10^{-19}×2×10^6×1×10^{-6}×\sin 90°$ $=3.2×10^{-19}N$ |