The area of the region bounded by $x^2=4y$ and $x=4y -2 $ (in square units ) is : |
$\frac{8}{9}$ $\frac{4}{9}$ $\frac{2}{9}$ $\frac{9}{8}$ |
$\frac{9}{8}$ |
The correct answer is Option (4) → $\frac{9}{8}$ $x^2=4y$ and $x=4y -2 $ finding intersection as $x^2=4y$ $x+2=4y$ $x^2=x+2$ $x=-1,2$ so area = $\int\limits_{-1}^2\frac{x+2}{4}-\frac{x^2}{4}dx$ $=\frac{1}{4}\int\limits_{-1}^2x+2-x^2dx=\frac{1}{4}\left[\frac{x^2}{2}+2x-\frac{x^3}{3}\right]_{-1}^2$ $=\frac{9}{8}$ sq. units |