The ratio of the curved surface area and total surface area of a right circular cylinder is 2 : 5. If the total surface area is 3080 cm², then what is the volume (in cm³) of the cylinder? |
4632 \(\frac{28}{\sqrt {6 }}\) cm³ 1232 \(\frac{28}{\sqrt {6 }}\) cm³ 4312 \(\frac{28}{\sqrt {6 }}\) cm³ 4612 \(\frac{28}{\sqrt {6 }}\) cm³ |
4312 \(\frac{28}{\sqrt {6 }}\) cm³ |
CSA : TSA = 2 : 5 TSA = 5R = 3080 (given) 1R =616 CSA = 2R = 2 × 616 = 1232 TSA = CSA + 2\(\pi \)r² 3080 = 1232 + 2\(\pi \)r² 1848 = 2\(\pi \)r² r² = 294 r = 7\(\sqrt {6 }\) CSA = 2\(\pi \)rh = 1232 2 × \(\frac{22}{7}\) × 7\(\sqrt {6 }\) × h = 1232 h = 1232 × \(\frac{7}{44}\) × \(\frac{1}{7\sqrt {6 }}\) h = \(\frac{28}{\sqrt {6 }}\) Volume = \(\pi \)r²h = \(\pi \) (7 \(\sqrt {6}\))² x \(\frac{28}{\sqrt {6}}\) = 4312\(\frac{28}{\sqrt {6 }}\) cm³ |